Problem 59

Estimate the number of molecules that make up Earth, assuming an average molecular mass of $30 \mathrm{~g} / \mathrm{mol}$. (Note there are on the order of 10^{24} objects per mole.)

Solution

Start by looking up the mass of Earth: $5.98 \times 10^{24} \mathrm{~kg}$. Since we only want an estimate, round it up to $10^{25} \mathrm{~kg}$. Also, round the average molecular mass to $10 \mathrm{~g} / \mathrm{mol}=0.01 \mathrm{~kg} / \mathrm{mol}$. The number of molecules in the Earth is therefore roughly

$$
10^{25} \mathrm{ks} \times \frac{1 \mathrm{~mol}}{0.01 \mathrm{~kg}} \times \frac{10^{24} \text { molecules }}{1 \mathrm{~mol}}=10^{51} \text { molecules. }
$$

